ANALYSIS OF THE MOTION OF A SUBSONIC VAPOR
FLOW IN A QUASI-CLOSED VOLUME

Yu. Z. Bubnov and M. N. Libenson UDC 532.529.5

The motion of a vapor is described for the case in which the influence of geometry is iso-
lated. The parameters are determined for a subsonic vapor flow on the outer boundary of a
gas—kinetic layer near a surface of vaporization. Profiles of the gas-dynamic variables as
a function of the dimensionless coordinate are calculated.

The authors and others [1, 2] have analyzed the motion of a vapor in aquasi~closed volume for the
case in which the influence of flow rate is isolated. The kinetic relations obtained in [3, 4] between the
initial gas-dynamic parameters of the vapor and the temperature of the vaporization surface were tested
experimentally and the profiles determined for the variation of the gas-dynamic parameters of the vapor
during transit in a cylindrical chamber with condensation and revaporization at the walls.

The objective of the present study is to analyze the motion of a vapor in a closed volume* for the
case in which the influence of geometry is isolated.

We consider the case of vaporization in a truncated convergent cone with base diameters D, and Dy,
(Dy > Cy)) and height 1. with the entire volume at one given temperature (dT¢/dx = 0) close to the vaporiza-
tion point, except for the force-cooled chamber cover, where the vapor is completely condensed. In this
case there is no net vapor condensation on the side walls of the chamber [1, 2], and the variation of the
vapor parameters as a function of the coordinate x is determined solely by the geometry of the problem.t

The equation for the Mach number M = M(F) in the case of isolated geometrical influence has the
form [5]

. am? y—1 9) dF
M2 — 1) = =2 14 m? . 1)
=D = ( 2 F
For an arbitrary chamber cross section D, = Dy— 2xcote
dF. 4 cot ¢
Y __SO_P__ dx. (2)
F. D,—2xcoteg
Substituting (2) into (1) and separating variables, we obtain
M2 -
' Wl M = —D—2~—— dx. @)
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We reduce Eq. (3) to dimensionless form. The boundary cross section of the gas~dynamic problem is a
certain cross section x; situated at a distance of (2 to 3) A from the vaporization surface [3]. To simplify
the problem we assume that x; = 0, which is sufficiently rigorous, because L > A for Pg(Ty) > 1072 torr.

*The chamber construction is described in detail in [1].
TThe variation of the heat balance of the moving vapor due to condensation and revaporization, as in [1, 2],
can be neglected.
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Fig. 1. Curves of M = M(¢) for different values of the param-
eter 6: 1) 6 =1.2; 2)1.33; 3) 2.
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Fig. 2. Mach number in the initial gas-dynamic cross section
versus geometrical parameters of the chamber.

Then

where
S S 2 S
L 2 cot @

By a transformation of the left-hand side of Eq. (4) we obtain
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Integrating, we obtain
-1
1/ 2 .“YW“ .
—_— M =C(§ —¥>. 6
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We evaluate the constant of integration from the condition M = 1 at the critical gas-dynamic cross section.
For an isolated geometrical influence the critical cross section is the minimum cross section [6], i.e., in
our problem the cross section* Fi,.

Thus, M =1 for £ =1, so that

VT

: . NS
(=)

— o y=1
(8 —1y
and the equation for M = M(£) has the form
v
vl ( Ly oD
1 2 2(y—1) —1 )
— . M2 _ ¥ L o
M\v—l'M) - (6 — 1) =g @

For a diatomic vapor (y = 7/5)

*It is essential to note that high-frequency disturbances can in principle propagate from the cross section
F1, downstream in the subsonic vapor, inducing an instability of the investigated flow regime. However,
if a cooled cover is placed in the cross section Fy, where the condensate can only accumulate, practically
without revaporization, the subsonic flow becomes stable.
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Solving Eq. (8) for £, we obtain
65— 1 o
=8 ——— B M,
13 a7 W 1 (5 + MY 9)

Curves of M = M{£) plotted according to Eq. (9) for various values of 6 are given in Fig. 1. It is apparent
from the figure that as £ — 0 the Mach number becomes considerably less than unity, and for £ = 0 Eq. (9)
can be solved explicitly for 6:

§—1\2
My 2 0,58 | - ) (10)

The dependence M, = M) is given in Fig. 2. To find the profiles of the other gas-dynamic variables we
need to evaluate them in the initial gas-dynamic cross section as a function of M, i.e., find ny = f(M,) and
Ty = £(Mg).

We make use of the solution of the gas-kinetic problem for the determination of the relation of ny and
Ty with ny and T, with regard for the fact that in our case the vapor flows at a subsonic velocity, i.e., uy
< ¢4(Ty), and we write the following initial expressions: _

/RT, o, ongt kT, o " m )
. —B- iD*lu, Y/ R 1la
Tt = o l/ 2nm P Vom ( ! ] 2kT, (112)
n,kT. n kT LTy . /S m
P L el WL Lol B 1 :%D*(u / _._) )
1 m 2m m ' ]/ 2kTy (11b)
5 mu2 3 mn 2kT 3/2 mnlﬁ
nytty | — kT, L) = 9. 2 -
1”1< g it = ) 2; @ \ m 4

T, VL I
O* - 6i3D* 1,
X ( P ) [l (lll l/ 2kT1 T ( Uy V 2kT1 ) (110)

where B is an unknown quantity characterizing the fraction of reverse particle flux from infinity to the
vaporization surface and i®®* (z) are the error integrals [7].

Recognizing that ¢; = vy kTy/m), we transform the argument of the function ii®* to the form

m o S vkTym v
u ——e = T ~ 1 = M L .
: l/ 7 " o V om0 ) 3 (12)

We now introduce the new variable 6 = MgV /2, where My = uy/c¢y. Then

/ kT, _ s _E__' *
M)/ st =mi [1 F g 1@ (e)}, (13a)
n kT L1 p .
-.——-gm" =n,ul [ 1+ e e AU (9)} : (13b)
2kT0 372 oy 5 ' 1 fD* 1 3 L3
no( — ) = nu Vn{ s T 1+ an [iD*(8) + 6@ (e)]} (13c)
We denote
£, 0) = 1+ 2“9 i0* (0), (142)
L1 i
Bb 0 =1+ — L vor ) (14b)
5 ﬁ Pk { %
fsB. 8) =1+ —om o — o U™ (6) + 650*(O)). (140)
Then from (13a) and (14b} we have
n, fy(B, )
My = 0 123 7/ ,

and from (13b), taking (15) into account,
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Multiplying (13a) by (13b) and dividing by (13¢), we obtain another relation between ny and ny:
n Is(B, 9)
ny = —- 36 o a7
8 fu(f, 0)-f5(Bs 6)
From (15) and (17) we obtain the following algebraic equation for the determination of j3:
B R@ 0 =16 e 0. 18)
n
Equation (18) represents a quadratic equation in 3:
S (o — o0+ ) = d + adp - g - agh
s
in which a, b, ¢, d, and g are defermined from (14a)-{14c) as follows:
[18, ) =1+ aP; [,(B, 0) =b—cf; [3(B, 0) =d - g
L () NP WP . (2
20 Co20r g2
= Tk il {3y * )]
d=1 5 g = iD*(0) - 63D* (9
202 263
The solution of Eq. (18) subject to the adopted notation has the form
T be -~ ad + g = l//{—lgbc—i; ad —»i»g) —4 i\é ¢ — ag)(i bz-—d\)
8- T __ T AN 3 (19)

2 (—8— e ag\)
\ T(' /
The results of a numerical solution of (19) are given in Fig. 3. The solutions of Eq. (16) and (17) are
given in the figure in the form T/ Ty = £(6) and ny/n, = £(€). It follows from the solution M, = f(6) (Fig. 2)
that M, is considerably less than unity over a wide range of variation of the parameter 6. Accordingly,
we consider separately the case of small M and, hence, small ¢. It is evident from Fig. 3 that for € £ 0.4
we have 8 =~ 1 and Ty/Ty = 1. This situation corresponds physically to the condition when the kinetic energy
of the directional subsonic vapor flow is much less than its internal energy, i.e.,
2 3
I 2T
g C

We now find an analytical expression for n;/ny = £(¢) under the given assumptions. According to (16}
f,(8)/11(€) =V /20, Then on the basis of (15)

n,

Fo (B 0) 1
A 8~ 2 mef8) (20)

1
n, I

For a more precise calculation of the ratio ny/n; = f(€) we approximate g = f(8) in the interval 0 < ¢ £ 0.4
by the linear function g =1+ €. It is seen in Fig. 3 that the line =1 + 1.86 practically coincides in the
indicated interval with the curve plotted for p = f(€) according to Eq. (19). Then, taking (14a) and (14b) in~
to account, we have

i1
n 91 @8] 1 lis—(—t_—wl\)J
b lx 2 \Va
1
= 1 1 o o
2V b | — e = __ej
Va ( 2 2V @b 2
or, neglecting the term (x/2)€,
ny 1

Finally,
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Fig. 3. Parameters of vapor in the initial gas-dynamic
cross section versus Mach number.

Fig. 4. Normalized curves of vapor parameters versus
dimensionless coordinate. 1) T/Ty = f(£); 2) p/py = £(&);
3) /Py = £(¢).

1
&~ — —_ (21)
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The expression thus obtained yields good agreement with the exact values of ny/nj calculated according to
Eq. (17), up to 6 = 0.4, and can be used to determine the vapor density in the initial gas~-dynamic cross
section. In the derivation of the gas—dynamic relations we used a technique developed in [3] and based on
the approximation of the particle distribution function in a Knudsen vapor layer by the Tamm—Mott—Smith
bimodal function. Here, as opposed to [3], we use this approach for an arbitrary value of the Mach num-~
ber (M < 1) at the outer boundary of the gas-kinetic layer, rather than for M =1 only. The legitimacy of
this approximation is upheld insofar as the thickness of the Knudsen layer is small in the event of anabrupt
change of the distribution function at its boundaries (namely ~2 or 3 particle mean free paths). The re-
sulting approximate gas-kinetic relations shown in Fig. 3 are in good agreement with the exact solution
given for the gas~kinetic problem in [8].

Knowing the values of the vapor parameters in the initial gas-dynamic cross section, we can now use
the well-known expressions of [6] to calculate the profiles of the density, pressure, temperature, and
other gas-dynamic variables as a function of the coordinate, because they are all uniquely expressed in
terms of M and the initial vapor parameters ny and Ty.

Normalized curves of the vapor parameters p/oq = £{£); p/py = f€); T/Ty = (&) as a function of the
dimensionless coordinate § are given in Fig. 4 for the above~stated conditions.

The foregoing theoretical analysis of the motion of a subsonic vapor flow in a conical chamber there-
fore shows that the vapor remains hot (Ty = Ty) and dense over a wide range of variation of the chamber
geometrical parameters and vaporization temperature, even at a large distance from the vaporization sur-
face. Consequently, a quasi-closed volume having a conical profile is well recommended for the produc-
tion of vacuum condensates with a thermodynamic-equilibrium crystalline structure, where the substrates
can be oriented either perpendicular or parallel to the vapor flow.

NOTATION

is the coordinate measured from the vaporization surface;
is the cross-sectional area of the chamber;

is the temperature of the vaporization surface;

is the chamber wall temperature;

is the vapor temperature;

is the vapor pressure;

is the vapor density;

is the Mach number;

is the saturated vapor pressure;

E“"dﬂsﬂj’qw

lav]
)
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A is the mean free path of the vapor molecules;
P is the angle between the large base and generatrices of the chamber;

uy, Ty, 04, Pl are the velocity, temperature, density, and pressure of the vapor in the initial gas-dyna-
mic cross section.
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